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ABSTRACT
An algorithm, especially suitable for a computer, is presented for
carrying out Fisher's two-sample permutation test for non-negative integer-
valued data. It is shown that the same method can be applied to carry out
the permutation Wilcoxon test, using average ranks. Some numerical examples

are given and an optimal property of the permutation test is indicated.
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AN ALGORITHM FOR THE DISCRETE FISHER'S PERMUTATION TEST

*
Andrew P. Soms

1. INTRODUCTION

The concept of a permutation or randomization test originated with
Fisher [3]. An excellent discussion is given by Conover [2], pPp. 357-64,
together with extensive references, and the reader is referred to this source

for the relevant details. Briefly, let X5 Isi <k1, and Yy 1<ic<k,, be the

2)
observed values from populations 1 and 2, respectively (not necessarily
distinct), and let x and ;'be the sample means. It is desired to test at

level a the hypothesis that populations 1 and 2 are identical against the

alternative that population 2 tends to produce smaller values than population 1

(i.e., is stochastically smaller). For Fisher's permutation test, hereafter

called the permutation test, the number N of samples of size k2 that can be

drawn from the combined set x., 1<i<k,, y., 1<i<k,, without replacement,
i -7 =71 i -~ =2

with sample mean less than or equal to y, is counted and the null hypothesis
k +k
rejected if N/[ lk 2] < o. The permutation Wilcoxon test is carried out in

2
exactly the same way, except that the sum of the average ranks is used in
place of y. These procedures are especially appropriate when there are few

distinct values taken on by the sample observations and there are a substantial

number of ties in the data.

* :
Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, WI

53201.

Research sponsored by the United States Army under Contract No. DAAG29-75-C-
0024, the G. D. Searle & Co., and the University of Wisconsin-Milwaukee.

B N TS S —




PN ISR .

As an example, in drug screening experiments a control and treatment
group are observed for a fixed length of time, at the end of which each sub-
ject is assigned an integral numerical score 0, 1, ..., k, with 0 being '"best"
or normal and k 'worst,'" or completely diseased. It is then desired, using
an exact test, to compare the scores of the control group against those of the

treatment, to see if the treatment scores are significantly lower.

K 2. DERIVATION OF THE TESTS

1 Let each independent control score Xj, luij_ikl, have the same density
i P[X1 =i] = P;» 0<i<m, with cumulative distribution function F, and each 1
independent treatment score Yj’ 1<j<k,, the same density pi, PfY1= i] = p{,
0<i<m, let kl and S1 and k2 and S2 be the sample sizes and sample sums for

the control and treatment, respectively, and let the total number of 0's,

1's, ..., k's observed be Moy coey My (here k is the largest i <m such that
m, >0). It is desired to test the null hypothesis F = G against the alterna-
tive F < G, where F < G means F(i) < G(i), 0<i<m, with at least one strict
inequality (i.e., the treatment tends to produce smaller values, or

E equivalently, Yl is stochastically smaller than Xl). Denote by Ni the number

;; of i's in the treatment, given Mys Mys oeey M. Then it follows immediately

that under the null hypothesis Py = pi' » 0<i<m,

! : o (1)

"n ==
=
—
= 3
. e
N——s
;::;
n
—
+
st
N
S—

k
P{Ni=ni, 0<i<k, 0<n <m, izo ni=k2} =

aal”

0’ K For k=1, :

(1) is the well known conditional hypergeometric distribution used for the

The tests here described will be conditional, given m vg M

test of the null hypothesis P, - pi against Py >p1 in two binomial popula-

] tions with parameters (kl’pl) and (kz,pi) (see, e.g., Lehmann [5], pp. 140-3).




The permutation test here described may be regarded as an extension of
Fisher's exact test when there are k+1 possible outcomes, 0, 1, ..., k (k>2),
with i >j implying that i is '"worse'" than j. We used the algorithm to be
described below in this particular case and found agreement with the tables

in Bennett et al [1]. The distribution in (1) is called the multivariate
hypergeometric, and has been discussed by, e.g., Van Eeden [6] and Johnson

and Kotz [4], pp. 300-2.

Let the significance level be a. Then for the permutation test we find
all those vectors n = (no, Aok nk) with 'El ini_isz, and if the sum of the
probabilities of these vectors n is less tﬁan or equal to o, we reject the
null hypothesis. The procedure for the permutation Wilcoxon test is the same,
except that the sum of the average ranks is used. Since this test is
invariant under any transformation of the sample values that preserves order,
it will always be assumed here that mi>0, 0<i<k (if this is not so, the
data can be relabe}led so that this is true). The average rank corresponding
to the value i is lgl m:i + (mi+1)/2 if i>1 and (m0+1)/2 if i =105

For the purpose of deriving a computational procedure for the descrip-
tive level of significance, it is convenient to consider a class of permutation

tests of which the two described above are special cases. It is assumed that

for each i, 0<i<k, there is a non-negative weight Ci» €9<C€y < v, and

that the observed value for the treatment is S2 (i.e., if n.o» i:iinikzi are the

k
observed treatment frequencies, then S, = ) c.n..). The problem then is to
2 fuil i'io % X
find all vectors (no, iy nk) such that Oiniimi, Z ni=k2, and Z ¢ ny < S2

k i=0 i=0
and sum their probabilities. Since R, = k2 - Z n., a possible set Ngs =ees Ny
i=1

must satisfy




ams - ,
R #

The relations (2) afe equivalent to

B 28, gk iZz("i‘co)“i)/ €y =8}

k k
k,-m.- J n, <n <k,- J n
- e

0 f_nl f_ml s

0 in; <m, 2 <1<k,
or equivalently,

k

Max (0, kz m,- lzzn )<n <M1n[(s2 0 2" L (ci-co)ni/(cl-co), k2~izz

Oiﬂim.,2<i<k.

1 — —

In order to continue the process of obtaining limits for Ny, Mgy voe

terms of higher subscripted ni's, the following fact is needed.

numbers a,, 1<i<n, bi, 1<i<m,

Max a. < Min b,
i-— i

1<i<n 1<i<m
if and only if
31.§ bj

for all i and j. This allows us to obtain intervals for Ny, Mg,y o

(2)

(3)

. nk, in

For any real

(%)

s My We




give the results for n, and ng explicitly and also give a general formula for
nj. The interval for n, is
k k
Max(O,kz-ml—mO-iZSni) = n, < Mln((SZ-COk2-i§3(Ci-CO)ni)/(CZ_CO) - (6)
k k
(Sy-cykp*(ep-cImy- I (e5-¢)Iny)/(cpme)), ko= I ny, my)
i=3 i=3
The interval for n, is
: k
: Max (0, kz-mz—ml—m z n. )<11 <M1n((S2 0 2 _z (ci-co)ni)/(cs-co) " (7)
1 i=q4 ! i=4
4 k
: (Sz-c1k2+(cl—c0)m0-iz4(ci-cl)ni)/(cs-cl) 3
k k
; (S,-c Kk, * (c,-coImy+(c,-c Imy 1Z4(ci-c2)ni)/(c3-c2) ; kz-iz4ni, m) .

The general formula for the limits on nj
given by

jil mi' E

Max (0, kz-
i=0

ﬁ i
- k = n. ’
4 2 qeja 1
i sy
i. J
A (S,-ck ]f (c;-cqIn. )/ (
- -c.k,- c.-c.)n. c.-
2052 jefel i 071 J
!'il i(
3 (S,-c_k,+ (c_-c.)m, -
i - 4 jsg T 2 3 i=je1

is given below.

i=j+1

The lower limit is

o) <
1) -

3 (8)

The upper limit is the minimum of the j+2 terms

(9)

o) >

(ci-cr)ni)/(cj-cr). 1gr<j=-1.
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Note that (4), (6), and (7) are special cases of (8) and (9). For a given
k

value of k, in (8) and (9) X is set to 0 to obtain limits for n - The

i=k+1
general proof is by induction and follows by observing that in comparing the
j-1 k 4
last j-1 terms in (9) to kz- z m, - z n. to obtain the minimum expres- '
i=0 i=j+1

sions for nj+1, only the term corresponding to r=j-1 needs to be retained,

since the j-1 expressions are non-increasing functions of r.
For the permutation test, o =i, and for the permutation Wilcoxon test,
i-1
¢y = (m +1)/2 and ¢, = ) m.+(m,+1)/2 for i>1.
0 0 i 520 j i —

3. EXAMPLES

The advantage in obtaining the solution in the above form is that it is
ideally suited for a nested do-loop, with n being the index for the outermost,
n, for the innermost loop, the probabilities being summed in the innermost
loop. We have written a program for k =9 that carries out the permutation and
the permutation Wilcoxon test, and the two examples (based on laboratory data)
given below were analyzed using this program. Note that if a program has been
written for k=k

, it may be used for all k<k,, simply by setting

0

m equal to 0.
0

0

Mypgs *oo»

Examgle 1

In a screening experiment for a drug, k=4, m . =7, m, =17, m,=19, m, =4,

0 1 2 3
™ i k1 =25, k2 =23, and S2 =21. The actual control results were N, = (o, 6,

m
14, 4, 1) and the treatment n, = (7, 11, 5, 0, 0), where the ith entry is the
number of times i-1 occurs. Note that if all combinations are examined, there
are 28,800 cases if no bounding is done; whereas if the limits (8) and (9) are
used, there are only 34 cases to consider. The probability of the set which
gives a treatment mean, or equivalently, treatment sum, equal to or smaller

than the observed is .8794 x 10-5 and the corresponding probability for the

sum of the average ranks is .9120 x 10'5, and thus it is concluded that the




3

evidence is very strong that there is a causal mechanism depressing the scores

of the treatment group.

Example 7

In a screening experiment for a drug, a control and two treatments were
used, the control results being n, = (o, 0, 10, 13, 2), and the treatments

n, = (1, 5, 11, 6, 0) and n, = (0, 1, 23, 1, 0). Note that the mean score

for treatment 1 is 1.96 and for treatment 2, 2.00, the control mean being 2.68.

However, for the permutation test the probability associated with treatment 1

is J114Y % 1072, while for treatment 2 it is 1067 x 107°

, and for the permu-
tation Wilcoxon test the corresponding probabilities are .1344 x 10'2 and
.1067 x 10_4. Thus the descriptive levels can go in the opposite direction to

the mean scores or sum of average ranks.

4. CONCLUDING REMARKS

The algorithm for the permutation and the permutation Wilcoxon tests
here described is most efficient when there are a small number of values taken
on by the data. This is also, of course, the situation where the effect of
ties is of the greatest concern. For the permutation Wilcoxon test it was
shown above that it could be assumed that the data has values 0, 1, ..., k
with mi>>0, 0<i<k. For the permutation test, by a change in location and
scale (the test is invariant with respect to these transformations), the data
can be transformed so that the smallest value is 0 and all the values integral
(possibly with gaps). Then the above procedure is applicable if m. is now
defined to be the number of sample values that equal the i+1th largest data
value, with a total of k+1 possible, and ¢y is the i+1St largest data value.
Thus there is no loss of generality in restricting the sample values to be
0, 1, ..., k. We have written a short Fortran computer program, a listing of

which is available on request, which carries out the permutation and the




permutation Wilcoxon tests for at most 10 distinct data values. If a < .1,
then in order to have a reasonable running time, the approximate restrictions on
the total sample size k1 + k2 are: for 10 distinct values, < 50; for 8,
< 80; for 6, < 150; and for 5, < 250. Thus if there are 5 or fewer distinct
values taken on by the data, then the algorithm here described can be used for
all sample sizes encountered in practice. If the data has more than 10 distinct
values, then extreme tail probabilities may still be calculated using the above
procedure.

The randomized versions of the two tests here discussed are unbiased

against the alternatives F < G. This follows from Lemma 1, p. 73, of [5]. In

addition, by using a similar argument to that of [5], pp. 185-8, for the

ARz A

continuous case, it follows that the permutation test is uniformly most power-

ful in the class of all unbiased tests of F = G against F < G for the
i6 iel

alternatives p, = c(8))e hel), p] = c(8)e 'h(1), 6, <6

1 0’

In sections 1 and 2 the permutation test and the permutation Wilcoxon

0 <i<m.

test were developed based on population models. They can also be interpreted

i e———

as randomization tests on the kl + k2 experimental units provided that

each combination of experimental units has the same probability of being

included in the control group. The latter case is, in fact, the most reason-
ab;e assumption for the examples discussed.

Many other types of biological experiments also result in data which
can be analyzed by the method here proposed when it is desired to compare a
treatment to a control and the data has many ties. Some examples are the

number of survival days and the number of malformed fetuses in a litter.

&l
£
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